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Numerical Simulation of Fiber and Wire Array Z-pinches with Trac-I1

Abstract

Trac-11 is a two dimensiona axisymmetric resistive MHD code. It simulates all three
gpatial components (r, z, @) of the magnetic field and fluid velocity vectors, and the
plasma is treated as a single fluid with two temperatures (T, T;). In addition, it can
optionally include a self-consistent external circuit. Recent modifications to the code
include the addition of the 3-T radiation model, a 4-phase (solid-liquid-vapor-plasma)
equation of state model (QEOS), a 4-phase electrical/thermal conductivity model, and an
implicit solution of poloidal (B,,B;) magnetic field diffusion. These changes permit a
detailed study of fiber and wire array Z-pinches. Specifically, Trac-1l is used to study the
wire array Z-pinch at the PBFA-Z pulse power generator at Sandia National Laboratory.
First, in 1-D we examine the behavior of a single wire in the Z-pinch. Then, using these
results as initial radial conditions in 2-D, we investigate the dynamics of wire array
configurations in the r-z and r-0 plane. In the r-z plane we examine the growth of the
m=0 or "sausage” instability in single wires within the array. In the r-8 plane we examine
the merging behavior between neighboring wires. Special emphasisis placed on trying to
explain how instability growth affects the performance of the Z-pinch. Lastly, we
introduce Trac-111, a3-D MHD code, and illustrate the m=1 or "kink” instability. We also
discuss how Trac-111 can be modified to simulate the wire array Z-pinch.
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Chapter 1

The Z-pinch

This thesis will mainly be concerned with simulating the early time dynamics of the wire
array Z-pinch at the Z accelerator (PBFA-Z) at Sandia National Laboratory (SNL). The Z
accelerator is the world’s largest X-ray source capable of producing 290 terawatts of power
and 1.9 million joules of energy. Recently, there have been dramatic performance increases,
measured in X-ray power output, as the result of changing the initial conditions of the
wire array. The physical processes behind this result are not well understood. The focus
of this thesis is to explain, through numerical simulations, how initial array characteristics
ultimately affect the performance of the Z-pinch.

A Z-pinch is created by applying a voltage across a cylindrically symmetric geometry
such as a wire, an array of wires, or a cylindrical foil. As the current flows through the
wire for instance, the material is heated and ionized, forming a plasma. The current itself
produces a strong magnetic field (by Ampere’s law) which accelerates the material radially
inward (figure 1-1). The plasma column thus pinches on the z-axis producing high densities
and temperatures. This energy is then quickly converted to radiation through X-rays.
Hydrodynamically speaking, the magnetic field produces a 7 x B force which increases
the kinetic energy of the fluid. This kinetic energy is converted into electron (and ion)
internal energy through pdv work. This electron energy is finally converted into radiation
energy which leaves the system as X-rays.

At SNIL, the 7Z accelerator uses a cylindrical array of 100-400 wires of thickness 5-22 um

arranged at a radius of 1-2 cm. The entire array carries a maximum current of 20 million



F=JxB

Figure 1-1: Z-Pinch configuration.

amperes during a 100 ns pulse. At peak compression radiation temperatures of 150 eV
are reached. Power output is strongly affected by fluid instabilities that occur because of
the magnetic pressure applied to the fluid interface. Most notable of these is the Rayleigh-
Taylor (RT) instability, a fluid type instability. This will be the subject of some discussion
in later chapters.

Dramatic performance increases were first observed on the Saturn machine, a precur-
sor to the Z-accelerator, at SNL. As wire number was increased (and thus interwire gap
was decreased) the quality of the implosion and the radiated power was seen to increase
monotonically [17]. The same effect was also seen on the Z-accelerator with tungsten wires.
As wire number was increased from 120 to 240, the radiated x-ray power increased by
(40£20)% [18]. Furthermore, decreasing initial wire diameter on arrays of fixed radius and
wire number produced substantial (four-fold) improvements in x-ray performance.

It has been proposed that the performance improvements are attributable to the merging
characteristics of the plasma formed when the wires are heated. That is, at some minimum

wire spacing (the data from the Saturn experiments suggested that this is 1.4 mm), the wires



are able to form a plasma shell during their initial individual expansion. Subsequently, the

array is imploded as a uniform plasma shell with some perturbations that drive RT growth.

1.0.1 Dissertation Problem Statement

The purpose of this thesis is to investigate the individual as well as the merging character-
istics of the wire plasma produced in the PBFA-Z experiment. We will attempt to explain
why performance increases with either increasing wire number or decreased initial wire di-
ameter. We begin by studying a single wire in the r-z plane. The 1-D calculations show
how the wire expands as it is heated and vaporized. 2-D r-z calculations are used to study
the growth of the m=0 or ”sausage” instability which may be responsible for decreased
performance when individual wires repinch in the array. Finally 2D R — 6 calculations are
used to study the merging characteristics of the individual wires.

Throughout this thesis we will use Trac-I1, a 2-D MHD code, to perform the calculations.
Several chapters are devoted entirely to explaining the development of the physics packages
added to Trac-II. These were necessary to accurately simulate the Z-pinch system. Appendix

A contains a summary of Trac-II as well as the newly incorporated physics models.



Chapter 2

3T Radiation Model

2.1 Derivation of Equation

We begin our derivation with the radiation transfer equation, given in the inertial frame by

18[1,
c Ot

+Q-VI,=n,—x,1Iu (2.1)

where [, is the specific intensity, v is the photon frequency, and €2 is the direction angle.
The right hand side represents the sum of sources (emission) and sinks (absorption). Our
strategy is to first transfer equation 2.1 to the ”fluid” or Lagrangian frame (v,€2 —v,, Q20)
where the photon angles are no longer straight lines and the frequencies are Doppler shifted.
Next we integrate over direction angle to obtain moment equations. The angular moments

of I, are defined as

E,(v,) = 1 I, dQ0o
c o

Fy(v,) = /Iyoﬂodﬂo

P,(v,) = l/Iz,oﬂoﬂodﬂo (2.2)
c

Finally we will integrate over all frequencies v, to obtain the single group, or ”3T”, radiation

equation.



The derivation of the moment equations is lengthy and can be found in the literature

[6][7][8][5]. Our moment equations in cylindrical coordinates (to order z ) are given by the
c

following equations [5].

The 0th moment:
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Next we make several approximations. First we take the diffusion approximation and
Ap ¥

ignore terms of order ~£—. This term will be of second order since in the diffusion approx-
c

imation A\, = X, !, the mean free path, will be small compared to our gradient lengths Al

v
and we are in the nonrelativistic regime (= < 1). We will also drop all acceleration terms.
c

This leaves us with the following 1st moment equations

19

_XOFOT = C;ECFPOTT)
B = 3 (o)
Xolloz = Caz 0zz
Ap .

Next we assume isotropy (to lowest order in E)

1
Porr = Pozz: 0(99:§E0

Py = 0
Now we may write
c 190
. = — -—(rk
! 3x, 1 or (rFo)
c 0
r, = ——(F
z 3%, 32( °)
or, more simply
I, =-———VE, (2.6)

which is "Fick’s law” for radiative diffusion.

Turning to our Oth moment equation and again applying the diffusion approximation

and isotropy we obtain

oF,,
0z

10
- (rF,,
+r3r<r )+

DE, B [12 (ron) + %] [ﬁ OFor | v, Oy,
Dt “lrort " Oz ¢z Ot ¢z ot
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3 [ T ] ov,

or + T + 0z
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Or in vector form

DE,
Dt

OF,
ov,

v afg+v - 2v-7)
c2 ot ° 3 v

+ B,V -V + = 47, — Xt

A
Applying Fick’s law we have (the third term drops since it is of order TPE)
c

DE,
Dt

OFE,
ov,

+ENV-v —V- <LVEO> —E(V~7) = 4mn, — ex,Fo

3%, 3

To obtain our ”single group” radiation diffusion equation we integrate over all frequencies

Vo
FE= /OO dvoE, (Vo)
0
We obtain
% +EV~?—V~7/duo <%g§> —V~/duo <3;OVEO> = /dvo (471, — X Fo)

We may integrate the third term by parts:

Vo aEO Eo
d ol & = oEo o o = d 0 5
/ v < 3 81/0> v (1/ ) ’O / v 3

where Pp is the radiation pressure. We write out the total derivative

o8
ot

C
3X,

+?~VE+EV~7+PV~7—V~/duo< VEO> z/dvo(4ﬂno—cono)

to obtain

%—?+V~(E7)+PRV~7—V~/CZVO<

c
3. VEO> = /dyo (4, —ex,Fo)  (2.7)

So far we have said nothing about our actual radiation distribution. If we assume a



Planckian distribution

h V3

o

w2c3 exp (hw,/Tr) — 1

47
Eo(”o) = ?B (VmTR) =

then our radiation energy density will be

3

h
E=[d ; = al%
/ o2 exp (hw,/Tr) — 1 “k

where

2

a =

15 (he)?
This is Stefan-Boltzmann’s law. Furthermore, we may rewrite the right hand of equation
2.7 by assuming LTE - local thermodynamic equilibrium. This assumes a close coupling

between matter and radiation and leads to Kirchhoff’s law which is given by

Mo (Vo) = ko (Vo) B (v0,T)

where T is the matter temperature. If we define the Rosseland mean opacity g (in units

of em?/g)

VE
f dVOXiVEO (vo)

0B (1/07 TR)
Tx
1 0B (1/07 TR)
X, OIg

PER

[ dv,
and the absorption mean opacity
1
PRE = dvox, (Vo) Eo (v5)

and the Planck mean opacity

4
pEp = = /dl/olio (vo) B (vy,T)



we obtaln

% (aTg) + V- (algp V) + PRV - =V

: 3P"GRV (aTj}z) = acp (HJPT4 — /fETé)

Next we make a couple of modifications. First we assume that kp =~ xg. This will
generally be true of optically thick materials. Second, we realize that the flux given by

Fick’s law can exceed the free-streaming limit, or Stefan’s law, if

Fl=——— |V (aT})| >

’ ’ ca
- 3pl€R

2

T

or more simply put, if the material becomes ”thin” and the Rosseland mean free path

exceeds the typical gradients in the problem:

1
Ap=—> Al
PRR

Therefore, we introduce a ”flux limiter” that reproduces the free streaming limit. This is

given by
ca
— _Ev (aTé)
Fi=—"——-= (2.8)
. 2VTy,
Ii —_—
PRR 3 T]%L
combining all this into our energy equation we finally obtain
O (aTh) = —V - (aTAT) =PV - T~V - F, T — T} 2.9
5 (@Tr) = =V - (alx V) = PrV -V =V - Fi + acprp (T = Tg) (2.9)

The terms on the right represent advection, pdv work, diffusion, and radiation-material
coupling, respectively. Note the two physical parameters in the problem - kp and kg.
These are the Planckian and Rosseland means. Usually these will be supplied by tables
from the super transition array (STA) model [35][24].

2.2 Numerical Solution

In Trac-II the 3T equation model is ”operator split” into diffusion, advection, pdv work,

and electron-radiation coupling parts. The advection and pdv work routines are treated



Figure 2-1:

just as their hydro counterparts with radiation pressure and energy replacing electron or
ion pressure and energy. The diffusion routine relies on the ICCG (Incomplete Cholesky
Conjugate Gradient method) for an implicit solution. The electron-radiation coupling term

is solved implicitly as well

2.2.1 Diffusion equation

We must first write the diffusion equation in volume-differenced form. Consistent with
Trac-II’s numerical scheme, quantities such as density (p) and temperature (T') are defined
as "zone centered” while diffusion coeflicients are defined on the zone faces. To do this we
insist that the flux F be continuous across a cell boundary. Consider two adjacent zones,
V. and V; (figure 2-1).

Here ”I” and ”r” refer to left and right. We define an average temperature 1™ on the

face between the two zones. Our equations for right and left hand fluxes are

AA

=8 (T — 1) NG

(2.10)

10



and

AA

s *
. . =1 =1 =1 . 4 .
by continuity of flux we demand that F';= F,.= F Solving for T** we obtain
ﬂ T4 4+ B
T* = o (2.12)
AVl + 5
. . . . . _> _> _> .
substituting this into our equation for F'; = F', = F we obtain
(o1 aa
F="Fw AV; (213)
5, T A

But g =

SO We may write
3pl€R

T _TYHAA
7ol =1 (2.14)
3(mrkRry +MykRy)

where m refers to the zone mass.
Our diffusion equation can easily be written in volume-differenced form. Integrating

over volume and using the divergence theorem

4
/3<‘;?)dv:/—v-?dv:—f?~dﬁ (2.15)

Now consider taking a counterclockwise loop around the faces of a zone labeled 717, All

the outside zones will lie to the right ("r”) to this zone as shown in figure 2-2. The difference

equation is written as

caNA? (TF—T}) A(aT})
_ f{ F-dA = 23 (o + D) = A Ay (2.16)

zone

Solving implicitly for Tz4 we obtain

n n 1 n n
DY _p(d i chc( ) <T(n+1)4 T +1)4> (2.17)

11



= A
AV, AV,
4 4
TI Tr
Y |
Figure 2-2:

where we may define our ”face-centered” diffusion coefficient as

caNA?
3(mrkRry + MikR)

fccgb) = (2.18)

Equation 2.18 is really just the familiar 5-point differencing scheme. If we had N zones
it would yield a system of N equations which can be re-written in the form of a linear
equation: A -x = y. Since A is a sparse matrix (only five nonzero elements per row)
we must choose an appropriate method. We choose the ”conjugate gradient” method - an
iterative method - for solving this sparse linear system [9]. Although we will omit the details

here, the conjugate gradient method algorithm involves minimizing the equation

f(x):%x~A~x—y~x (2.19)

which occurs when Vf = A -z — y = 0. Thus minimizing f is equivalent to solving our
linear equation. The minimization is accomplished by iteratively improving x™ with search

directions p" such that z"t1 = 2" 4+ a” p". Here a" is scalar quantity found at each

12



iteration which minimizes f(z" +a™p™). The process is continued until a specified tolerance
is reached. The ”incomplete Cholesky” part of ICCG refers to the ”preconditioning” of our
linear equation with a specially chosen matrix A~!. With this our linear equation will look
like

(A1A) - z=A"1y (2.20)

If A is chosen to be close to A then our algorithm will converge in fewer steps as
AlA~1and z ~ g’ly. In ICCG we will construct A—! with the Cholesky algorithm,
assuming that A and A1 have the same sparsity structure. That is, A1 will be a sparse
matrix with non-zero elements in exactly the same locations as in A. The ICCG package
used in Trac-II uses a slight variant of this method developed at the Center for Applied
Scientific Computing at LLNL [25].

2.2.2 Electron-Radiation Coupling

We simultaneously solve the two equations:

d(aly) 4 4
o5 = acrp (17 -1) (2.21)
and
aTe 4 4
Coe—gr = —aCpHp (12 - 17) (2.22)

Problems arise because the second equation has a linear dependence on 7, in the derivative
whereas T, and T, appear quadratically everywhere else. We will choose to linearize the T
terms. This is similar to the approach taken in the MACH2 code by Melissa Douglas [16].

Now we rewrite the equations in finite-volume form. First we define several quantities

er = Awval? (2.23)
dedte = Avcye (2.24)
ty, = (corp)? (2.25)

13



SO We may rewrite our equations as

%(er) = 75];1(CLAUT€(n+1)4 —er™th) (2.26)
and
dedte%(Te) = —75];1(aAvTe(nH)4 —er™th (2.27)

Note that ¢, is the electron-radiation equilibrium time. Next we expand T around

T? in equation 2.27.

0 1 (n)4 (n)3 9 ntl
dedte B (Te) = —t, " (aDVTV" 4 daDv AT B (Ty) —er™™)
0 _tz; ' (n)4 +1
dedtea (T.) = OF (alDVTE™M* —er™) (2.28)
Y YAYANA I
[ (dedte)t,,
Now impose energy balance and solve for er™t!
_4—1 n+1 _ n
dedteQ(Te) - by (aAUT("M — ety = 2(6T) - _u
ot 4aAUAtTe(n)3 € ot At
(dedte)t,
(2.29)
t A
er™ e = £ OF (aAvTMt — gpntl) (2.30)
1 YA IYANA I
(dedte)t,
define
t AL
all = I (2.31)
« 4aAvAtTe(n)3
(dedte)t,
to obtain

14



4
ol er’™ + aZTaAUTe(n) (2.32)
14+ ag.

Now use equation 2.29 to solve for 77 +!

an
T = - ?Ze(aAvTe(")‘* — et (2.33)

2.3 Example Problem - Inner Array

As a real-world example of radiatively driven hydrodynamics we consider a "nested” array.
This is a configuration consisting of an outer array of tungsten wires arranged at R,yter = 2
cm with a second inner array of carbon wires positioned at R;pner = 1 cm. The inner array
will consist of 50 60 pm diameter graphite wires. Pinhole images of this type of arrangement
[34], but for tungsten wires only, are shown in figure 2-3. The outer array consists of 240
7.1 um wires at 2 cm and the inner array has 120 8.9 pm wires at 1 cm.

It is believed that the inner array creates a ”buffer” onto which the outer array collides
and decelerates. Because the growth of the Rayleigh-Taylor instability (a fluid instability
dominant effect in wire array Z-pinches) behaves as ¢7* where vy = kg, the inner array
will have the effect of reducing g. Thus the growth rate vz, will be reduced. The end effect
will be a tighter pinch capable of radiating more efficiently (with a shorter pulse width).

Of some importance is the question of whether the inner array does indeed evaporate
and form a buffer. (More work is needed to determine the optimal inner array arrangement
for reducing RT growth.). The mechanism for this will be radiative heating from the outer
array. As the outer array is imploded, it carries current which produces ohmic heating.
This energy is in turn radiated towards the inner array which in turn heats and vaporizes.
The problem can crudely be reduced to a 1-D problem of a single graphite wire with a
radiation temperature (7,) boundary condition determined by the radiation temperature
of the outer array. This can be provided by another 1-D r-z plane calculation in LASNEX
[33]. Of course our problem will end at the time that the outer array collides with the inner
array.

The radiation temperature waveform is shown in figure 2-4. We initialize a 1-D carbon

15



Figure 2-3: Fig. 2. Pinhole images on nested Shot 180 at 1-ns intervals; pinch compression
is 40:1.

wire at solid conditions (p = 1.8 g/cc, T, = T, = T, = 2.5 x 107° KeV). Later we will
describe in more detail how the equation of state is actually modeled. In this case bonding

and dense material effects are taken into account. A plot of radii vs. time is shown in figure

2-5.
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Chapter 3

Electrical /Thermal Conductivity in
Trac-11

3.1 Solid-Liquid Phase

Trac-11 uses an analytic model for the electrical conductivity of the solid and liquid phase. It
is based on a quantum mechanical model of Mott and Jones [12][22]. Although the details
will be omitted here, the model is based on first-order perturbation theory in which 7,
the collision time, is calculated. This involves using a perturbed potential, assumed small,
which is the difference between the actual potential (with irregularities in the lattice due to

thermal vibrations) and the potential of a perfectly regular lattice. The solid conductivity

T @1 27,2
—e
o

0, is the conductivity at the reference temperature 7, and density p,. o1 and «o are

is given by

exponents that depend on the specific material. +, is the lattice Gruneisen gamma. The

liquid conductivity is given simply by

o1, = fm0s (3.2)
fm 18 a constant and is .5 for most materials.
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We must also be able to choose between the liquid and solid phase. This is accomplished

with Lindemann’s Law:

«

—2rOD (3.3)

Tmelt =

©p, the Debye Temperature, can be calculated through the definition of the Gruneisen

gamma. Integrating

- 31H@D

3.4
dlnp (34)
with the assumption that ~ has the following density behavior
<1 1> f £sa (3.5)
v = oy, = —— | forp=— .
o n Po
v = ~v,fornp<1
we obtain
Tonert = Timon™ Yo~ 7a= /32001 for > 1
Tete = T e ¥ for n < 1 (3.6)

where 1, is the melt temperature at the reference density. A plot of the resistivity for

tungsten at solid density is shown in figure 3-1

3.2 Vapor Phase Conductivity

At some point, the material will become vaporized. This phase is chosen at the boil tem-

perature and is given simply by

Tooit = T6 T mert (3.7)

19



Resistivity vs. Temperature
Tungsten at solid density (p = 19.3 g/cc)
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Figure 3-1: Resistivity vs. Temperature for tungsten.

where 7, is a material dependent constant. In this phase only some of the atoms will be

ionized. Thus we must consider a resistivity consisting of electron-ion and electron-neutral

parts:

where

N =Nen T Nes
MUe;

/r/ . =
ei neeQ
mUen

’[7 =
en neeQ

both these equations can be rewritten in terms of the collision cross section v = nov. Thus

Mo Ve
Ze2
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MonUTe [ Tin
U = T |\
en ) o

For the ion cross section we shall use the interionic spacing

, 3\ 2/3
o= =7 (3.11)

4mn;

In the vapor phase the plasma condition, given by [3]

3/2

W>>1
Te

ne, ~
is no longer satisfied and the Coulomb cross section drops below the minimum cross section
given by (3.11). This just expresses the fact that the mean free path cannot be less than

the interionic spacing. For the neutral cross section we use the Bohr radius:

op =7mR% . = 0.88 x 107 1¢cm? (3.12)

The Bohr radius, an estimate of the atomic radius, is a reasonable approximation to the
neutral cross section.

Now we need an estimate of the degree of ionization so we may calculate n.,n;, and n,.
For that we turn to the Saha equation which assumes chemical equilibrium between these
three species. We will also assume, for reasons of convenience, an ideal gas made up of
electrons, neutrals and singly ionized atoms (Z=1). The Saha equation for this particular

case is [20]

~1/2
ng, [ 27h 3/2 ¢L/T
o= (l—l—aa <?> T3/2 (3.13)

where « is the ratio of the number of ionized atoms to the total number of atoms:

o]
I
33

(3.14)

and [ is the ionization potential. g, and g; are the statistical weights, or degeneracy factors,

of the atom and ion, respectively. This is determined by the orbital angular momentum
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and spin of the ground state:
g=025S+1)(2L+1)

Therefore we may calculate our electron-ion and electron-neutral resistivities

Mo ;U7

Nei = % (3.15)
Mo BohrVT _

Nen = # (Oé t- 1)

where

ai:ﬂ< ) >2/3 (3.16)

3.3 Thermal Conductivity in the Solid-Liquid-Vapor Phase

For the solid, liquid and vapor phases the thermal conductivity is calculated using the

Wiedemann-Franz law which relates thermal conductivity to electrical conductivity [14]:

K 7T2 ]CB 2
—=—\—) T 3.1
o 3 <e> (8:17)

The derivation of this result involves two assumptions - the relaxation-time approximation
and the semiclassical equations of motion. The relaxation-time approximation assumes
that electron collisions are effective in maintaining equilibrium and the electron distribution
can be described by a local temperature T (the Fermi-Dirac distribution function). The
semiclassical equations of motion simply describe the time evolution of the position and
wave vector of a electron.

The universal parameter . = 7r—32 <k73>2 =245x 1078 (%M)Q is the Lorentz number. It

is found to agree reasonably well with it’s experimentally measured value for a large group

of metals, including aluminum and tungsten. For instance, aluminum’s Lorentz number is

2.19 x 107 (912)? at 373 K.
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3.4 Plasma Phase Conductivity

The plasma conductivity model is based on the work of Lee and More [10]. By solving
the linearized Boltzmann equation with a fermionic electron distribution, they obtain an

electrical and thermal conductivity in the following form

2

o, = niTAi(u/kBT,weT) (3.18)
kp (kT

T uﬂz‘li(u//@ﬂweﬂ

Unlike the familiar Spitzer formula, this conductivity includes degeneracy effects through
the dependence on chemical potential. In the non-degenerate limit (p/kpT— > —o0) it
reduces to Spitzer’s result. Like the Spitzer formula it is dependent on magnetic field
through w.7. This formula is necessary if we are to correctly model hot dense plasmas
where Spitzer conductivity may be in error by over a factor of a hundred.

AT and A[j are given by tabular values. The chemical potential u is calculated from

the Thomas-Fermi model (QEOS) [11] and 7 is given by

3/ (kgT)*?
T = m ( g ) 1—|—€7M/KBT F1/2 (319)
2027 (Zopp)? mietin A

Fi /9, a Fermi-Dirac integral, and Z.y, the effective ionization level, are both calculated in
the Thomas-Fermi model and are returned from QEOS subroutines. The plasma conduc-

tivity given above is chosen when it exceeds the vapor conductivity. That is,
0 = max (Uplasma7 Uvapor)

3.5 A Note About Parameters

For tungsten and aluminum the following constants are used in equations 3.1-3.6 [22]
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Constant | W Al

To 178.57 (mohm-cm) ! | 354.11 (mohm-cm) !
15 0.0256916 eV 0.025 eV
Po 19.3 g/cc 2.703 g/cc
o1 1.3192 1.1433

Q9 1. -1.

, 1.67 1.93

Ya 1.3 1.5

fm 0.5 0.5

T 1.6109 1.6720

Trmo 0.39 eV 0.20508 eV

The Ionizat

ion potentials and degeneracy factors used in equation (3.13) [15] are:

Constant | W Al

I 7.98 eV | 5.986 eV
Zo 1 6

g1 2 1
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Chapter 4

Trac-1I Equation of State - QEOS

4.1 Thomas-Fermi and Cowan Ion Model

Trac-IT uses the Quotidian Equation of State (QEOS) [11] to calculate electron and ion
pressure and energy for use in the hydrodynamic routines. QEOS also enters in various
diffusion routines through its calculation of the ionization level Z.; and the electron-ion
collision time 7. QEOS is a self consistent analytic model which is valid over a large range of
densities and temperatures. For our uses, it will allow us to model the behavior of tungsten
wire through all four phases.

QEOS uses separate electron and ion temperatures and assumes electron and ion quanti-
ties are additive. For the electron part, QEOS uses the Thomas-Fermi model [26][27]. This

model assumes each ion is surrounded by a sphere of charge satisfying the usual Fermi-Dirac

1/3
statistics. The radius of the charge sphere is R, = < 3 ) . Thus the charge state is found

A7,

to be

A7
Zepr = ?Rin(Ro) (4.1)

Thermodynamic functions such as energy, free energy and entropy (given by the formulae
for a finite temperature semiclassical gas) are calculated with the self-consistent solution of

Poison’s equation for the electrostatic potential V (r):
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V2V (r) = dren(r) — An Zeb (r) (4.2)

Of course, once the thermodynamic functions are determined, thermodynamic quantities
such as pressure and energy may be calculated through functional derivatives. In practice,
QEOS uses tabular values for the free energy to evaluate thermodynamic values.

For the ion part of the equation of state, QEOS uses the Cowan ion model. This analytic
model incorporates several well known laws in their appropriate limits to obtain an equation
of state valid for a large range of temperatures and densities. For instance, the Dulong-
Petit law, the Gruneisen pressure law, and the ideal gas law are included in the Cowan
ion model. Like the Thomas-Fermi part of QEOS, a free energy is calculated from which

thermodynamic quantities can be obtained.

4.2 Bonding Model

Due to the Pauli Exclusion Principle, the Thomas-Fermi model will predict positive pres-
sures at solid conditions. To compensate for this, QEOS uses a semi-empirical bonding

model that introduces an additive correction to the energy and pressure:

- <%>1/3]) (4.3)
() () - )]

The constants £, and b are determined from the requirement that the total solid pressure

E, = FE,(1—-expb

equal zero ( pror (ps, T = 0) = 0 where pror = pe+pi+pp) and the calculated bulk modulus
equal its experimental value ( Bexp,=p <8%ng”> ). Unfortunately, using this procedure, QEOS
will predict a melting temperature of about 1.5 eV for all materials. In practice, the
experimental bulk modulus, an input quantity, must be slightly adjusted to give the correct
melting point. In any event, this bonding correction will have little effect away from the

solid region.
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4.3 Implementation of QEOS in Trac-II

Trac-IT uses the following QEOS ”vectorized” subroutines [11] in which density and tem-

perature are input quantities

eostfu (il,i2,inc,t,rho, z, a, 223, p, dpdt, dpdrho, e, dedt, s, zef f) (4.4)
eosiv (11,42, inc, t,rho, z, a, p, dpdt, dpdrho, e, dedt, s)

chemp (vil,i2,inc,t,rho, zef f, a, zmu)

These are the Thomas-Fermi, Cowan-lon, and chemical potential subroutines, respectively.
Also used is the bonding correction subroutine which requires various bonding parameters
such as uncorrected pressure and energy, solid density, and the difference between uncor-

rected and corrected bulk modulus:

bondcorv (i1,12,inc, rho, rho0, p0, €0, dbm, p, dpdrho, ¢) (4.5)

After the plasma is initialized, electron and ion energies are treated as fundamental
variables and are not altered by QEOS. When an energy is incremented, say in the hydro
routines, QEOS specific heats are used to increment electron and ion temperatures. Finally,
the temperatures are adjusted at each timestep to be consistent with their energies through

a single Newton-Raphson step.

4.4 Example Problem: Current Posts in PBFA-Z

To illustrate the use of QEOS and the 4-phase conductivity model we consider the flow of
current through a stainless steel post. Our intention here is to model the effects of large
currents on the PBFA-Z apparatus (PBFA-Z and the Z-pinch will be discussed in greater
detail in the next chapter.). At issue here is the amount of current that can be carried by
a post. At high current densities (%Rpost ~ 10 M A/em) shocks and ohmic losses become

important. We consider two different diameter posts - 0.3 and 6.0 cm - and use an equivalent

circuit (I,R,V(t)) from the actual experiment.
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Figure 4-1: Radii vs. time for 0.3 cm diameter post.

The 6.0 cm post will remain solid during the entire current pulse. However, the 0.3 cm
post will undergo several phase changes as it is ohmically heated and then compressed by
the large magnetic pressure generated by the current. A plot of radii vs. time for the 0.3
cm post case is shown in figure 4-1. We see that the large magnetic pressures produce a
strong shock in the post.

These results have been compared to other rad-hydro calculations and shown to agree
within 10% [19]. Later this summer (8/98), high current density energy loss experiments
will be performed at the Z facility. These experimental results will be compared to these
predictions and future 2-D calculations using Trac-1I. Of primary importance is the energy
loss expected in X-1, the planned next-generation Z-pinch accelerator, which will be capable

of a peak current of 60 A A.
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Figure 4-2: Circuit current for various post diameters.
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Chapter 5

The Z-pinch: 1-D results for a

single wire

5.1 PBFA-Z Prepulse

We first use the improvements in Trac-II to study the initiation of a single wire in the
PBFA-7 wire array at Sandia National Laboratory. The voltage applied to the wire is
determined from the actual PBFA-Z voltage waveform (figure 5-1). A self consistent LR
circuit model is solved at each timestep using the equivalent inductance and resistance from

the experiment. Of course L and R for this single wire must be scaled appropriately:

Lwire = NLaM’ay (51)

waire = NRaM’ay

where IV is the number of wires in the array. The code will then calculate rBy = 21, at
the boundary which will drive the dynamics of the problem.
Specifically we consider a 10 pm diameter tungsten wire from a PBFAZ shot of 180

wires. The length of wires in the array is 2 c¢m and the array diameter is 3 cm. We will
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Figure 5-1: PBFA-Z equivalent voltage.

begin with a solid tungsten wire at room temperature:

T. = T,=T,=25x10°KeV (5.2)

p = 193 g/ce

For this calculation we implicitly solve electron and ion thermal diffusion. The magnetic
field, By, is solved implicitly as well. As mentioned before, we will use the 3-T radiation
diffusion with opacities from the STA atomic physics model [24]. Our mesh will be pure
Lagrangian with 72 zones in the radial direction. The zones must be ”feathered” (decreased
geometrically in the r-direction) to resolve current flowing in the corona of the plasma
properly. Our feathering factor will be 0.9 and our outermost zone will have a thickness of

only 3A.
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5.2 Results

The wire remains solid for the first 0.06 s of the problem. The initial resistivity is so high
that current flows uniformly through the wire which is in turn heated uniformly. When the
vapor temperature is reached (This is approximately .6 eV for tungsten) , the wire expands
and develops a ”skin” where most of the current flows. During this initial expansion phase
between 0.06-0.12 us very little of the wire is converted into plasma. As a rough measure
we define the fraction of the wire mass that has density below one-hundreth of solid density
(p < 0.193). This we define as the ”involved mass”. We find that only 2-10% of the wire has
a density below this level. In fact, the outer zones have a density of around 1075 —10"6 g/cc
and are expanding at a rate of approximately 1-3 ¢m/us. At this stage our wire remains in
a liquid-solid phase with a low-density plasma corona.

At about 120 ns into the problem magnetic pressure is sufficient to repinch the low-
density corona. The density of the outer corona will increase by more that an order of
magnitude during this first pinch phase (0.12-0.14 ps). Therefore, the electron-radiation
coupling will increase sharply as acpkp ~ p?. The electron and radiation temperatures will
come into equilibrium in the corona due to this large increase in coupling and a radiation
wave will be sent through the entire wire. This is most clearly seen in figure 5-5 where the
radiation and electron temperature in the innermost zone are plotted as a function of time.
Before the repinch the plasma temperature oscillates around the vapor temperature. Then,
the radiation temperature of the zone rises and thus drives up the material temperature
past the vapor point. Between 0.15-0.16 ps both temperatures rise dramatically as the
region expands.

The wire is completely vaporized after this first pinch. Furthermore, radiation losses
also become significant when compared with total energy (figure 5-6). Subsequent repinches
release large amounts of energy through radiation. However, by the time of peak current
(0.2 ws), the entire array has begun to implode towards the axis and a single wire calculation
is not particularly meaningful. Furthermore, the single wire calculations are clearly only
valid until the plasma formed from individual wires crosses the the initial gap between the
wires. In this particular case we see that the radial expansion exceeds half the gap distance

(figure 5-2). This will be discussed further in chapter 6.
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5.2.1 Contour Plots

We now look at several contours plots for the 1-D wire case discussed in the previous
section. We will use a 3 times pre-expanded wire for this analysis since, for early times in
the expansion phase, the bonding model produces an ”accordion’ like clumping of mass.
The pre-expanded case is virtually indistinguishable from the ”initiated from solid” case
after the radiation wave has heated the inner zones of the wire. In either case, the radial
expansion is the same as well as the bounce (repinch) times.

The density contours during the initial expansion of the wire are shown in figure 5-7.
Contours at subsequent times are shown in figure 5-8. These show a repinching in the plasma
in the low density corona at 140 and 150 ns. Shortly after this we see further expansion
(170 ns). Figure 5-9 shows the radiation heating of the wire. Gradually, a radiation wave is
sent through the core of the wire with the electron temperature lagging behind. This lag is
shown in figure 5-10 where it is seen that radiation temperature is greater than the electron

temperature in the wire core.
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Chapter 6

RZ Plane Calculations

6.1 Motivation

Recent experiments have shown that the m=0 "sausage” instability is important in fiber Z-
pinches. D. Kalantar showed that the plasma corona and inner core have different dynamics
[20]. In his experiments with single aluminum wires he observed that only 1% of the wire
mass formed a corona. The rest of the plasma was contained in a well-defined core. With
X-pinch backlighting he showed that the instability growth of the corona, owing to its high
Alfvén velocity, had a much more rapid growth rate than the inner core.

Because of the pronounced effect of the sausage instability on a single wire, we per-
formed calculations on its effect on different wire diameters in a wire array. Specifically we
performed a series of calculations for a 120 wire array at an initial radius of 2 cm on the
PBFAZ machine. A plot of power output versus initial wire diameter (figure 6-1) shows a
dramatic decrease in performance (measured in peak radiated power) - almost a factor of 3 -
as wire diameter is increased [18]. As a first attempt to understand this curve we will study
the sausage instability growth in individual wires of the array. The reasoning behind this
is that growth of the sausage instability could seed the RT instability or otherwise degrade

the performance of the Z-pinch.
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6.2 Procedure

We considered four wire diameters: d=10, 11.8, 22, and 25.4 pm. As in the 1-D case,
circuit parameters are appropriately scaled and the PBFAZ voltage waveform was used.
The wire was initialized in 1-D until it expanded 10-20 times the original solid radius. This
corresponded to a time of approximately 0.075 ps. Then the 1-D wire profile was mapped
to a 2-D r-z plane mesh with an initial velocity perturbation.

The velocity perturbation was chosen to be a ”sausage-type” mode periodic in the z-

direction and satisfying incompressibility (V - Uper = 0):

2
OV pert = (Vzyvp) = —f sin (kz) , er cos (kz) (6.1)
where k£ = QTW This form is chosen because incompressibility is satisfied for ideal MHD

modes near marginal stability.

We will model only a small segment of the wire (0.5 mm) and resolve only a half of
a wavelength on it. This is chosen as a starting point since sausage modes of wavelength
~ 1lmm are seen in Kalantar’s aluminum wire work.

To study the perturbation growth we must extract the growth rate, v. Fourier trans-

forming the velocity

v(k,t) = Z cos (kz) v (2) e™'dz (6.2)

and the kinetic energy

1 .
KE(k,t) = 5 vaQ(k, t) = 1t chosQ (kz)v? (2) ™'dz (6.3)

= Z mcos? (kz) v? (2) e™'dz

We see that the growth rate may be easily extracted from the Fourier transform of the

kinetic energy:

In (KE(k,t)) = 2/’ydt + const. (6.4)

Thus a plot of In(KE) versus time will reveal the growth rate ~.
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6.2.1 Test Case - Bennett Equilibrium

To illustrate this analysis we consider an ideal test with an analytic solution. We take
a perfectly conducting Z-pinch in Bennett equilibrium with a small velocity perturbation.
Bennett Equilibrium occurs when the magnetic pressure B?/8r is sufficient to balance the
plasma pressure nK 1. This leads to a condition on current. If we consider an ideally
conducting cylindrical plasma the magnetic field at the surface is given by B = 21/r. We

may write the plasma pressure as

P = pe+p;i =n.KpT +n;KgT

NKpT
2

= (Z+1)nKgT =(Z+1
(Z+DnKpT = (Z+1)—

where the electron temperature is assumed equal to the ion temperature (T = T, = T;) and
N is the number of ions per unit length. Now, applying Ampere’s law and pressure balance

we obtaln

I? =2(Z +1)NKgT (6.5)

This is the Bennett pinch condition. In Chapter 9 we will present another type of equilibrium
condition for Z-pinches.
Unlike the velocity perturbation presented earlier, only the outer zones (in the r-direction)

will be perturbed:

V pert = (Vz,vr) = [0, v, cos (kz)] (6.6)
The analytic solution to the growth rate for this problem is given by [1][2]:

B I' (K
A2 = 2= o o (KT)

Amp,r? I, (Kr)

(6.7)
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Figure 6-2: Mesh plots showing growth of sausage mode perturbation. Half a wavelength

1s resolved on the mesh.

where, writing the sound speed as (vF,/p,)

For our test example we take r, = .05 cm, p = 1.93 x 1073 g/cc, T, = T; = 100 eV. We
use the ideal gas EOS, which is assumed in the Bennett model, with Z = 74, A = 183.85
(fully ionized tungsten). To maintain Bennett equilibrium we apply a current of 0.344
MA (By = 1.38 MG) to the wire. Our velocity perturbation is v, = 0.05 cm/us with a
wavelength of A = 1 mm. From a linear fit of the plot of In(KE) vs. time we find a growth
rate of v = 250 1/ps. The analytic solution (solved with Mathematica) gives v = 258 1/ us.
Several meshes of increasingly finer resolution were used until the growth rate, which scales

as N2 ., converged. We see that Trac-II agrees fairly well with the analytic value. Some

zones?

discrepancy is probably due to an artificial pressure that is introduced to prevent mesh

distortions.

1/2 _ o2

42

87




log(KE)
““I“"I““I““?‘“‘“Ij““l“"I““I““I““

-31
-32
-33
L L l L L l L L l L L l I}
0.005 10.01 0.015 0.02
time (ps)

Figure 6-3: Plot of In[K E(k,t)] vs. time. The wire undergoes approximately 5 e-foldings.

6.3 Tungsten Wire Runs

6.3.1 Short Wavelength Results

As mentioned before, we consider Tungsten wires of initial diameters d=10, 11.8, 22, and
25.4 pm. The 2-D run is initiated (from its 1-D counterpart) at ¢, = 0.075 ps. The
perturbation velocity v, = er is chosen to be 1% of the maximum expansion velocity (
vo = 0.03 cm/us ). The perturbation wavelength is taken to be A = 1 mm on a mesh of
length 0.5 mm in the z-direction. The code is run in pure Lagrangian mode and the mesh
tangles or "bowties” at about t = 0.15 us for each wire case. At that point the run is
terminated.

Unfortunately, an infinitesimally small (i.e. 1 x 10°® em/us) perturbation could not be
chosen since the thermal and toroidal magnetic field diffusion routines use the ”operator
splitting” or ADI method [9]. This method, which involves dividing the timestep into two
steps of size At/2 and solving each direction implicitly with a trivial tridiagonal matrix in-

version, introduces noise into the calculation. In the future, these routines will be converted
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Figure 6-4: Contour plot of density for 10 um wire.

to a fully implicit solution with ICCG (as done for the radiation and poloidal magnetic field
diffusion).

Contour plots of density taken late into the calculation are shown in figures 6-4 and 6-5.
Also shown (figures 6-6 and 6-7) are contour plots of magnetic field By as well as electron

temperature.

6.3.2 Analysis

Next we examine the sausage mode perturbation growth for the Tungsten wires. During
the first 40 ns each wire freely expands due to ohmic heating and there is little perturbation
growth. In the subsequent 40 — 60 ns the wire undergoes its first pinch and the growth is
rapid - approximately 200 — 250 1/us for each wire. This is due to the fact that magnetic
pressure increases and radiative losses reduce the electron pressure of the wire. In each wire
there are about 4-5 e-foldings before mesh distortions force the run the stop. Comparing

growth rates between wires we see that there is not an appreciable difference between large
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Figure 6-5: Contour plot of density for 25.4 pum wire.
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Figure 6-6: Contour plot of T, (KeV') for a 10 um wire.
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Figure 6-7: Contour plot of T, (KeV) for a 25.4 pm wire.
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Figure 6-8: Contour plot of 7By (MG - em) for a 10 um wire.
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Figure 6-9: Contour plot of 7By (MG - cm) for a 25.4 um wire.

and small wires. Figure 6-10 indicates that slopes the In(KE) vs. time curves, which are
equal to 2+, are approximately the same. Thus it does not appear that sausage mode growth
is responsible for the dramatic bend in the power curve.

Some further insight in to this result can be provided by looking at the "half-current
radius” for these four wires in 1-D. This is defined as the radius which encloses half the total
current of the wire. Figure 6-11 shows that the time histories for the various initial wire
radii are nearly the same. This shows that the 1-D dynamics of the outer plasma of the wire
does not seem to vary significantly with wire radius. Since to first order Alfvén and sound
speed determine growth rate, this is consistent with our 2-D calculations. Furthermore, we
see that the radius of the expanding plasma does not quite exceed half the gap distance
(Agap/2). This suggests that wires in the 120 wire array are able to repinch and develop a

sausage mode.
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Figure 6-10: Plot of In(KE) vs. time for various wire radii.
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Figure 6-11: "Half Current” vs time for various wire radii.
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6.3.3 Long Wavelength Results

Lastly we consider long wavelength (A = 4 mm) perturbations in both large and small
diameter wires. In these runs we shall use a floor density of p;, = 2 x 1076 g/cc in a
slightly different way than before. Instead of defaulting 17 = co when p < p..;,, We shall
add mass to the zone so it does not fall beneath the floor value. The velocity perturbation
takes the same form as in the previous section but is larger (10% of maximum velocity or
v, = 0.3 em/ps). The runs are initiated at ¢, = 0.1 us.

Density contours are shown in figures 6-11 and 6-12 for a 10 and 18 um wire at approx-
imately the same time in the current pulse. These are taken during the first recompression.
In these runs we find that the calculation can proceed even after the first repinch. The plots
of Log(KE) for both wires (figure 6-14) show that they have roughly the same growth rate
during the first repinch (v a2 80 1/us). The smaller wire experiences a second and more
rapid repinch before the larger wire and this is reflected in the differences in the growth
rate after 0.14 us.

Unlike the shorter wavelength (A = 1 mm) case, the wires only undergo about one
e-folding by the time of the first repinch (0.14 ps). We conclude that longer wavelengths
become less important in terms of sausage instability growth. Using the analytic growth
rate formula (equation 6.7) as an estimate, we see that for long wavelength (or small kr)
the growth rate scales inversely with wavelength (v ~ 1/X). The scaling is not quite as
strong in the cases shown here but it should be noted that equation 6.7 is derived with the
assumption of an ideally conducting plasma initially in equilibrium and neglecting diffusion

effects.
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Figure 6-12: Density contour plot for 18 pum wire in

a 120 wire array.
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Figure 6-14: Plot of In(KE) vs. time for long wavelength (A = 4 mm) perturbations.
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Chapter 7

Poloidal Magnetic Field Diffusion

7.1 Introduction

Trac-II solves all three components of the magnetic field (B,, By, B4). However, until re-
cently the diffusion of the poloidal part of the magnetic field (ﬁp = (B, B;)) was solved
explicitly. Therefore, the timestep was limited by the Courant condition for magnetic field

diffusion:

At < AT p 2 (7.1)
n

In the » — ¥ plane wire array problem it is necessary to introduce vacuum regions around
the wire. Usually these regions are filled with low density, high resistivity material. The
magnetic field will pass through this low density material and establish itself around the
wire. To do this most effectively an implicit diffusion scheme, stable for any timestep,
must be used. Then the resistivity in the vacuum may be set to infinity and the magnetic
field will establish itself instantaneously around the wire. In contrast, an explicit scheme
would require that the magnetic field be passed artificially slowly through the vacuum. This
generally results in spurious heating and large magnetic pressure gradients in the vacuum
region.

Thus it was necessary to derive and implement an implicit diffusion scheme for the
poloidal magnetic field. This was done to be consistent with the definitions of magnetic

field and current already in Trac-II. Furthermore, the scheme is general to a non-orthogonal
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rA

AV, B

—
Figure 7-1: Single zone. Note that B is ”zone centered” whereas r A4y is "node centered”.

moving mesh.

7.2 Magnetic Field and Current

We must first describe how poloidal magnetic field and the associated azimuthal current
are defined in Trac-II. Consider a single zone in a mesh (figure 7-1).

Magnetic field may be derived from the vector potential:
B=VxA (7.2)
In our single zone we may find B through Stokes Law for an incremental volume AV

?@V::/Vxﬁw

_ fﬁxz:j{(_@xﬁ)xz

:_f@%ﬁ? (7.3)
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rA
01
(z,,r)

Figure 7-2: Definition of r Ay on faces used to calculate B.

rAy will be our fundamental variable defined on the nodes of our mesh. B will be
calculated using the value of r Ay on the zone faces (taken as the average of r Ay along the
adjoining nodes) along with the length vector ﬁ which connects the two nodes on each
face. This is shown in figure 7-2.

Thus we may write
— 1

—

Note that magnetic field is a zonal quantity. Current density Jpg 5 is defined as a nodal

quantity. It is found by using Ampere’s law at each face to find the current Iy (figure 7-3)

and then apportioning the current to each node according to

1
J@,n = m fo (75)

A, is simply the "nodal” area - the average of the areas of the four zones surrounding

node n.
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Figure 7-3: Definition of face current I

7.3 Magnetic Diffusion

Using Faraday’s law:

0B
—
e E
BN V X
—
and integrating around an area da we obtain
0B o
— — — — —
Using Ohm’s Law
— —
b=nJ
we obtain
0 —
—® = - J - dl
ot f{”
=~ ¢ J-d
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where (1) is an appropriately averaged quantity that we will define later.

Now we use the fact that our magnetic fields are poloidal (? = (B, B,)) and thus our
current density lies only in the 9 direction (7 =Jy /0\) We may do the integration over ﬁ
easily due to axisymmetry

0

5@ = 2mr(n) Jo (7.10)

Flux is simply related to vector potential in cylindrical coordinates

o = /E:~d_>a:/V><Z~£:/1§(rAg)rdrd0 (7.11)
T or

= 27arAy

Finally we may write our diffusion equation

D (ra0) = (o) Jy (712)

7.4 Implicit Diffusion

Now we will derive an implicit solution to our diffusion equation. Writing equation 7.12 in
implicit form we obtain

(rAg)i 1 — (rAg)t, = —Atryj (n) Tyt (7.13)

1,3 07,5

Next we find the current at each node J&J;.l. Our face length vectors are illustrated in figure

7-4 and with the definition of current density given in equation 7.5 we have

1 — — — — — —
Tyl = {<Bz‘,j71 - B,-,j> ~dhyj — <Bz‘,j - BHJ) “dvgj — (7.14)
+J 87TAZ"J'

— — — — — —
<Bi71,j71 — Bz‘ﬂ,j) ~dh;_1; — <Bi,j71 — Bz‘fl,g?l) ~dv; o1}

We may also write all the B in terms of the vector potentials (b, ; = (rAp) i j) at each

of the 9 nodes in the mesh shown in figure 7-4.

|

— —
ARGV NTA {= b5 +biv1j) - dhij — (biy1,j + bip1jv1) - dvigrj
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dvi{l,jAl

Figure 7-4: Computational grid for deriving difference scheme.

— —
+ (g1 + bij1) - dhijr + (i1 +0i5) - dvgsh

— 1 — —
Bivg = gy A=y biy) - dhicy; = (i + bijia) - dvig
t— 1,7
— —
+ (bij +bi—1,j41) - dhi—1 11 + (bic1j41 +bic1y) - dvimi ;)
— 1 — —
Bij; = WM{— (bi-1,5-1+bij1) - dhi—15-1 — (bij-1 +bij) - dvija
i—1,7—
! — —
+ (bij + bim1,5) - dhio1,5 + (bio1j +bic1-1) - dvio1o1}
— 1 — —
Bij1 = = i1+ big1-1) - dhij—1 — (bip1,j—1 + biy1,5) - dvigrj—1
28V
— —
+ (i1 +0ig) - dhi+ (bij +bi1) - dvij1} (7.15)

We may combine equation 7.14 and 7.15 to obtain a 9-point difference scheme in the

form

n+1 n _
b —bi; = Cicij-abioro1+Cigoibi o1+ Cigao1bigioa
Cie1,50i—1,5 + Cijbij + Cit1,50i11,5

Ci14+10i- 1,541 + G b + b (7.16)
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Next we define a shorthand for the ”face vectors” in each zone as shown in figure 7-5.

Figure 7-5: Shorthand for ”face vectors”.

The coeflicients are given by:

Ci—1,5—1

Cij—1

Citl,5-1

Ci—1,5

Ci,j

SERE

~~

_I_

E

EEE

2

=

+ [ (h202 4+ h201 — 0202 — v102)]

_ [04
- lav
[ &

_|_

[\]

_I_

a
a

v
v

[\]

v

[\]

(h2h2 + 2h201 + vlvl)}

(—h1h2 + h2vl — v1hl + vlvl)}

(h1hl — 2v1h1 +vlvl)
(h1h1 + 20102 + v202)

(h2h2 — 202h2 + v202)
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(—h1h2 + h2vl + hlv2 — vlv2)

—h1h2 —v2h2 4+ hlv2 + v20v2)

—h1lh2 — v2h2 —v1hl — v1v2)

(h1v2 — v1v2 — hlhl — v1h1)}

Jic1,5-1

Jic1,5-1

2,j—1

dit1,5-1

=1,

i—1,5-1

2,j—1

1%

di-1,j

Ji—1,5-1



Cip1y = [% (—v2h2 + h2h2 — v1v2 — h2v1)Lj71
+ [i (h1h1 + h1v2 — v1hl — v1v2)}
2V i,j
Gt = |gp(—v2h2—vlv2 — hlh2 - vlhl} gy
L i—1j
Cij1 = iv (—h1h2 — v1h1 + h2vl + vlvl)} Ny
Z7J
+ [iv (V202 — v2h2 + h1v2 — h1h2)}
i—1,7
Cip1ji1 = iv (h1v2 — h1h2 — v1v2 + h2v1)} B (7.17)
Z7J
where
a=aq; rig (s (7.18)
- 8’7TAZ"J .

7.5 Ohmic Heating

To derive the ohmic heating formula we look at the energy change of the magnetic field at

each node:
1 —
Upn = ©- > By 8(B,AV)
= _6an9,nAn (719)
Next we distribute the ohmic heating to the nodes according to our area-weighted conduc-

tivity
6UB v Z 4O-n néUB n — _6Uee,n (720)
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Chapter 8

The Wire Array Z-pinch

8.1 Background

We now turn our attention to the r — ¢} plane of the wire array. We will attempt to study
the merging of neighboring wires. An initially uniform shell is assumed in many r — z plane
Rayleigh-Taylor instability calculations. An r — ¢ calculation could be used to determine
when this shell is formed (and if it is formed) along with its density and temperature profile.
Thus a calculation of this type would more accurately determine the initial conditions for
the RT calculations. Furthermore, the characteristics of merging for arrays of different wire
number or wire diameter might elucidate the dramatic knees seen in the power curves.

In this chapter we present our method for modeling the » — ¥ plane of the wire array.
We discuss several calculations that illustrate the behavior of the merging wires. Finally,
we reconsider the 120 wire array shots studied in the previous section to determine if the

bend in the power curve can be attributed to merging characteristics in the r — 4 plane,

8.2 Computational Setup

The r — ¥ calculation is accomplished by translating the  — z mesh to large radius so that
essentially planar coordinates are obtained. A cross section of the wire (figure 8-1) is a
large ”bicycle tire” wrapped around the z-axis. Since we are concerned with the merging

of neighboring wires, we shall only consider a single wire with mirror boundary conditions.
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Figure 8-1: Single wire in ”r — 6” plane.

This can be represented by half of a wire at one boundary with a mesh width equal to half
the gap distance (figure 8-2).

Because we are interested in small displacements of the wire towards the wire array
axis, we first consider a ”planar” array of wires. This approximates the circular array
while Agap/Rarray < 1 fairly well. Later we bend the boundaries in slightly, producing
the appropriate "wedge” geometry. Essentially we will be studying a segment of the wire
array in xy coordinates since we are not presently interested in following the wires down to
convergence on the axis.

The system is driven by a load voltage determined by a 1-D array run from LASNEX.

This voltage drives the flux at the upper boundary, rAg, according to Faraday’s Law:

o 1
a?ﬂAg = —%Woad (t) (81)

Since large distortions of the mesh would occur during expansion, we run the problem

in pure Eulerian mode.

61



100.2

100.175

100.15 [

100.125

r100.1 =

100.075

100.05

100.025 f= it i

L L l L L l L L l L
lOOO 0.05 0.1 0.15 0.2

Figure 8-2: Computational mesh

8.3 Initial Examples of R-0 Calculations

As an initial test case we consider a 20 times pre-expanded 10 pm Tungsten wire from a
180 wire array. We set the conductivity to be an artificially high value (ideal MHD) and
turn off radiation. Density, current density, and magnetic flux contour plots are shown in
figures 8-3 to 8-6. These plots are taken at about 0.047 ps into the calculation which was
initiated at 0.1 ps. During this time the wire has moved approximately 1 mm towards the
axis. This is small compared to the initial radius of the wire array (20 mm).

As figure 8-3 indicates, the dynamics of the wire in the array is quite different than that
of a single wire Z-pinch. Because of magnetic pressure, low density material in the wire
gap is propelled towards the axis. The resulting wire takes on a teardrop shape. Clearly a
single wire in an array does not remain radially symmetric

Next we consider a more realistic example. We consider a single 10 pum wire in an 180
wire array. The wire is pre-expanded 20 times in radius and, as before, the PBFA-Z load
voltage is applied to the upper boundary. The problem is initiated at ¢, = 0.1 ps. In this

case both radiation diffusion and resistivity are turned on. Density, current density, and
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Figure 8-3: Contour plot of p (g/cc) at t=.047 us.
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Figure 8-5: Contour plot of 74y (MG - cm) at t=.047 us.

radiation contour plots are shown in figures 8-6 to 8-8.

The density contours show that material is ohmically heated and blown into the gap.
Due to magnetic pressure, this low-density material is accelerated towards the axis more
rapidly than the ”core” of the original wire. However, as more and more material collects
between the wires, the magnetic field lines open and more current can flow in this gap
region. The current density plots in figure 8-7 show this gap region to eventually carry
higher current density than the wire. Accordingly, material is repinched between the gap
(figure 8-6). As a final observation, we see radiation temperatures (figure 8-8) of around 20
eV which are consistent with experiment.

Again we see an entirely different set of dynamics than with the single wires in the r — z
plane. Because of the connection of magnetic field between the wires, they do not maintain
cylindrical symmetry. Material is swept down between the wires, baring the dense core to
the magnetic field. This aids in the heating and expansion of the entire wire. Conversely,
our 1-D r — z plane results show a low density corona that maintains itself around the

wire. We also see material collecting between the wires and forming secondary pinches with
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Figure 8-6: Density contour plots for a 10 um wire in a 180 wire array.
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Figure 8-7: Current density contour plots.
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Figure 8-8: Radiation temperature

down to axis, this is unsatisfactory.

8.4 120 Wire Array Shots
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current density being ”switched” from the original wire.

8.4.1 ALE - Arbitrary Eulerian Lagrangian

contour plots

We will briefly explain the use of the ALE features of Trac-II in the wire array problem.
Up to now, we have described calculations done using pure Eulerian motion in the R — 6
plane. In this mode the grid remains fixed (7gm-d = 0) and the fluid is free to move across
zone boundaries. When this occurs, fluid quantities such as mass and energy are advected.
One drawback to this method is that numerical ”diffusion” occurs as material is advected
though the zones. In this case, when the wire moves a distance equal to several wire radii,

large energy errors (>10%) begin to appear. Since we wish to eventually follow the wire

The second mode to run Trac-II is pure Lagrangian. In this case the fluid is attached to

the zones (nodes) and the mesh in turn moves with the grid velocity ( ¥ gria = ¥ fruia). This




was the mode used to run the 1-D and 2-D r — z plane calculations. With pure Lagrangian
motion, energy errors are typically small (~ 0.1%). Unfortunately, as mentioned earlier,
bowtying mesh distortions cause the runs to terminate prematurely. This fact will prevent
this mode from being used in our wire array problems. With low density material being
swept rapidly down between the wire gap in the £ — @ plane, the mesh would bowtie before
any appreciable wire motion had occurred.

The third mode in which to run Trac-II offers some relief from these problems. It is
ALE - Arbitrary Eulerian Lagrangian. In this mode the mesh is moved in a user-defined
fashion. First, a Lagrangian step is taken. Then the material is advected according to the

relative velocity between grid and fluid:
— = —
Vorel = VU fluid — U grid

The difficulty is to develop a scheme of assigning 7gm-d. In the case of the wire in the £ — 0
plane, we chose to move the mesh with the center-of-mass of the wire. In this way, the
wire may expand and distort within a set of zones that are in turn rapidly moving radially
inward. This minimizes the ”crossing” of zones problem while allowing us to follow the
overall motion of the wire for a long time. This arrangement is shown in figure 8-9.

In actual problems with ALE it is possible to follow the movement of the wire for up
to 1 cm of movement towards axis with small energy errors ( < 1%). Since the initial wire
array radius is 2 cm, this probably is the limit of our planar approximation. In the future
we will extend this ALE method to a wedge geometry. Detailed results of ALE runs will be

described in the next section.

8.4.2 Results with 10 and 18 ym Wires

We now revisit our study of the effect of varying initial wire diameter in an array of fixed
wire number. We consider 120 wire array shots with two different wire diameters, 10 and
18 pum. As in the previous R — 0 runs we will examine a single wire in a planar array
using mirror boundary conditions. The wire will be pre-expanded 10 times and initiated at

t, = 0.1 ps.
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Figure 89: ALE run with Trac-II. The mesh moves with the CM velocity of the wire.
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Figure 8-10: CM velocity and position for 18 pm wire.
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One obvious difference between the two cases is the width of the current sheath. For
the 18 um wire this is approximately AR =1 mm whereas for the 10 pm wire it is smaller
- AR =1/2 mm. This may be important as the width of the x-ray pulse is governed by the
width of the shell that is being accelerated towards the axis. A simple estimate of the pulse

width is given by [23]
AR
T out =~

x—ray Vshell

During this time kinetic energy is converted to thermal energy which is then radiated away.
Thus if the difference between shell width persists until convergence, this could explain why
the array of 10 pm wires produces a shorter x-ray pulse width than the array of 18 um
wires.

In the case of RT instability growth, the width of the shell is determined by the smearing
of mass from the bubble-spike characteristic of the instability [31]. Then the pulse width is
given by 7 out = tspike — lhupbie. It is possible that this scale is being determined instead
by the init;airg?ameter of the wires and their resulting dynamics. However, more conclusive

results would require a 2 — @ calculation that is carried out to convergence on axis. These

will be performed in the near future.

8.4.3 Hussey-Roderick Density Profile

As mentioned earlier, fluid instabilities become a dominant effect in Z-pinches. 2-D simu-
lations of wire array Z-pinches are carried out in the rz-plane by assuming the wires have

k2 is applied to the

merged into a cylindrical shell. An initial perturbation, varying as €’
plasma shell and the Rayleigh-Taylor instability, which grows as v = y/kg in the linear
phase, is studied. Through calculations of this type, experiments may be designed which
minimize RT growth and thus produce maximum compression and X-ray power.

Generally speaking, the choice of initial shell profile is arbitrary. However, R — 6 runs
can provide these initial conditions (i.e. p,Te,T; T, By as functions of r) for 2-D rz-plane
RT calculations. In figure 8-16 we show the 7”0 — averaged” density for the 18 pum wire
discussed in the previous section. Note that the profile is Gaussian at early times (due to

uniform expansion under ohmic heating) but evolves into a shape with a sharp boundary

with an exponentially decaying tail.
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Figure 8-11: Density contours for 18 pum wire.
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Figure 8-12: Current density contour plots for 18 pwm wire.
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Figure 8-13: Density contours for 10 um wire.
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Figure 8-14: Current density contours for 10 pm wire.
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Figure 8-16: 0-averaged density contours for 18 pum wire case.
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This profile is commonly seen in r-z plane calculations on cylindrical shells and was
calculated analytically by Hussey and Roderick [30][31]. A sketch of this is shown in figure

8-15 It consists of two scales. The first is determined by the resistivity:

and the second is determined by the sound speed and acceleration:

5=
g

Using force balance we may obtain a simple relation between the two scales

B2
Agr~ —
p=g S
A B P
== =M (8.2)
5 8mpc?2 P

B2
where Py = — is the magnetic pressure and P is the plasma pressure. For an imploding

P
shell =2 >> 1. In the case of the 18 wm wire density profiles shown in figure 8-16 we find

A P
rough agreement with equation 8.2 (37?]\4 ~ 10 — 20).
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Chapter 9

TRAC-III

Trac-III is a 3-dimensional resistive MHD code developed by the late Jim Eddleman. All the
fluid and magnetic field equations given in Chapter 1 are solved. Trac-III uses tetrahedral
elements in a Cartesian (xyz) geometry. Like Trac-II, the magnetic vector potential is
treated as a fundamental variable to ensure V- B = 0. Presently the code runs only in pure
Lagrangian mode but some attempt was made to include FEulerian motion.

For our purposes here we will consider a simple Z-pinch undergoing a kink instability.
Similar results were first presented by Jim Eddleman at the 1993 DPP APS meeting. This
example will serve to illustrate some of the physics of the Z-pinch while at the same time

illustrating the features of Trac-III.

9.1 Derivation of Equilibrium Configuration

We will now derive the equations for the equilibrium configuration of a Z-pinch under

specific conditions [1][29]. We begin with our equation of motion (A.2). For the steady

DV

state ( D

= 0) we have

- =
0=—-V(pe+p)+J xB (9.1)

The second term may be rewritten with a vector and Ampere’s law:
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- = 1 — —
T xB = ——B><<V><B>
47
B? 1 = —
= — — —B-VB 9.2
v<87r>+47r Vv ( )

2
The first term in equation 9.2 is referred to as the magnetic pressure term with pp = —

&

and the second term is called the magnetic tension term. In our case the second term

vanishes as B = By (r) $ Writing p = p. + p; we have

2
0 = —Vp—V(B—>

8

dp By 0
- £ 7?2~ (+B 9.3
or  Amror (rBy) (9:3)

Integrating over  we obtain
dp By 0
/EdT = — H@ (TB¢) dr
"By 9 9

= — — (r*B3) d 9.4
p) = po- [ S (B ar (0.4

Since our cylindrical plasma extends to r = r, we have p(r,) = 0 and we may write

To B¢ 0 9592
= 9 (2B a 9.5
P /0 8mr2 or (T ¢) " (9:5)

combining this with equation 9.4 we obtain our pressure profile equation

" By O an0
p(r) :/T 2 (r*B3) dr (9.6)

Next we solve our pressure equation for a specific configuration. If we assume that J,,

our current density, is constant throughout the plasma (r < r,) and zero outside the plasma
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we obtain, by Ampere’s law,

2r]
B¢ = 7 (T < TO)
27
= — (r>ro) (9.7)

T

Substituting equation 9.7 into equation 9.6 and integrating over r we obtain a parabolic
pressure profile for this constant current density case.

p(r) = r <1 - T—2> (9.8)

2 2
s TS

9.2 Kink Instability

As discussed in Chapter 5 an axially symmetric perturbation of Bennett Equilibrium will
produce sausage modes which grow exponentially. Similarly, if the plasma column is per-
turbed as a kink, this instability will grow as well. The reason behind this is that magnetic
field lines (By) on the concave side will be closer together than on the convex side. Thus
the magnetic pressure on the convex side is higher than on the concave side. This will in
turn cause the perturbation to grow. The growth rate for this mode is given by [4]

21.2
T ()
dmp 2

for long wavelength (A > R) and assuming an ideal plasma with no magnetic field enclosed
inside the Z-pinch (Bennett Equilibrium). Usually we may make a simple estimate of the
growth rate with

vy~ vak

where vy = \/B?/47p is the Alfvén velocity.

9.3 Computational Setup

A Z-pinch is initialized with a parabolic density profile. The boundaries are ideal conductors

and a slip velocity condition is applied to either end of the pinch. The current, magnetic
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field, and pressure are given by

Variable r <71, r>T,
. I? 0
T1io o
By r2 T
JE; 1 2 el?
P 2 <1—e_r_g> 72
In this specific case I, = 10 MA, r, = 2 mm, T, = 1; = 100 eV, and ¢ = 2—15 The

density and energy will be generated using the pressure profile condition and the Ideal Gas
Law (Z=A=1).
The kink will be seeded with a helical velocity perturbation given by

v, = v,cos(0)
vy = v,sin(0)
0 = kx—¢

In this example § = 7 (% — 1) and v, = 1 em/us. The velocity will be applied along the
center line of the pinch. The growth rate can be estimated by ~v ~ vak =25 1/us.

The initial velocity field and pressure contour plots are shown in figures 9-1 and 9-2. We
will enclose our Z-pinch in a box of length equal to the perturbation wavelength, L, = A =4

em. The width and height (Lg, Ly) will be equal to 1 em.

9.4 Kink Mode Results

In figures 9-3 through 9-6 we show the growth of the kink mode in the wire. The wire
undergoes vt 2= 9 e-foldings during its 0.37 ps run. During this time it grows nonlinearly,
seeking a shorter wavelength. This final wavelength is A = 1.6 ¢m and is probably deter-
mined by the resolution of our mesh (12,000 tetrahedral zones constructed from a 10x10x 10
hexagonal zones). The pinch is stabilized by the proximity of the walls as well as rotated

towards its corners.
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Figure 9-1: Initial velocity for kink mode
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Figure 9-2: Initial pressure contour plot for Z-pinch
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Figure 9-3:
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Figure 9-4:

79




t=0.37 ps
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Figure 9-5:

t=0.37 ps

rho
0.0332053
0.0269777
0.0207501
0.0145225

Figure 9-6: Density slice plot.
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Figure 9-7: Pressure and velocity distribution for Z-pinch.
9.5 Additional Calculations

Next we consider a slightly different arrangement. We use the exact same pressure profile
but the computational box is only a half wavelength long. To reduce the effects of the walls
in stabilizing, as well as rotating, the plasma column the walls are moved out farther. Our
Z-pinch will now be contained in a 1 X 2 X 2 em computational box. We will perturb our

Z-pinch in the xz plane with the following cosine velocity distribution
v, (1) = v, cos (kx + ¢) forr <r,

In this case we will take &k =7 (A =2 c¢m) and ¢ = g The arrangement is shown in figure
9-7.
To monitor the growth of the kink mode we will examine the kinetic energy. Its growth
will be given by
KFE ~exp (27t)

before nonlinear effects arise. Thus a log plot of the kinetic energy will reveal the growth
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t=0.062 ps
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Figure 9-8:

rate.

Contour plots of density are shown in figures 9-8 through 9-11. Again we see that the
ends of the Z-pinch are attracted towards the corners and the entire column is rotated buy
a 45° angle.

We may roughly estimate the growth rate through the Alfvén speed. Using the largest
density contour (p = 0.033 g/cc) and the magnetic field just outside the plasma (B = 10
MG@G) we find that v = vak = 49 1/us. Using the plot of log(KE) (~ 2+¢) vs. time in
figure 9-12 we find a growth rate of v & 45 1/us. Even with this crude estimate we see that

Trac-11I is in fairly good agreement with the analytic theory.

9.6 The Wire Array Z-Pinch

Jim Hammer and Dimitri Ryutov have recently derived analytic growth rates in the linear
regime for the case of a planar array of wires [32]. This type of configuration was modeled
with 2-D R — @ plane calculations in chapter 8 The instability growth can be separated into

two modes - a transverse mode and the traditional RT mode. Although our "box” geometry
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Figure 9-10:
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t=0.104 s
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Figure 9-11: Density contour and magnetic field plot.
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Figure 9-12: Plot of In(KE) vs. time for 3-D z-pinch.
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produced some annoying effects when trying to model a simple Z-pinch (i.e. rotation towards
the diagonal) , it is ideally suited for the planar 3-D array problem. With the addition of
mirror boundary conditions at either end of the box, a single wire or multiple wires in a
planar array may be studied. In the future, calculations of this type will be performed
and compared to the analytic theory. Having established agreement with theory, the full

problem - the 3D wire array in the PBFA-Z experiment - will be treated.
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Chapter 10

Summary and Conclusions

This thesis describes a study of various aspects of Z-pinches with Trac-II and Trac-111.
First, modifications were made to Trac-II to allow modeling of dense high Z materials like
those used in the wire array Z-pinch experiments. This included adding radiation diffusion,
a 4-phase EOS and conductivity model, and a new implicit poloidal field solver. Then,
using the PBFA-Z circuit parameters, the wire array Z-pinch at the Z accelerator at SNL
was studied. In chapter 5 the behavior of a single wire in the array was examined. In
chapter 6 we looked at the growth of the ”sausage” instability in single wires. Calculations
in the R — 0 plane, the cross sectional view of the wire, were performed in chapter 8. This
demonstrated the dynamics of the wire as it is influenced by neighboring wires while being
accelerated towards the axis. In chapter 9 Trac-II1, a 3-D MHD code was introduced and
used to illustrate the "kink” instability.

Several conclusions may be drawn from this study:

1. The wire remains solid well into the current pulse and has a core-corona structure.
Radiation flow that occurs during repinching of the corona is responsible for melting

the wire.
2. During the expansion phase of the wire, there is little sausage instability growth.

3. For the case of the 120 wire array at fixed radius, sausage growth does not vary

appreciably with initial wire radius.
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4. 1-D runs indicate that, consistent with experiment, the 1 mm gap length is an im-
portant scale. In the 120 wire case, the plasma expands to just about half the gap
distance. This indicates that repinching, and thus a growth of the sausage mode,

could occur.

5. 2-D R — 0 plane calculations show that the current sheath of the small diameter wires
is narrower than that of the large diameter wires. Since pulse width scales as sheath
width, this could possibly explain why arrays with a smaller initial wire radius have

a narrower x-ray pulse width.

6. 2-D R — 0 plane simulations show that the wires do not remain as well-defined indi-
vidual Z-pinches that are being accelerated towards the axis. However, even though
the Hussey Roderick profile is reproduced, they do not form a uniform plasma shell

as assumed in 2-D RT calculations.

7. To most accurately and conclusively study the growth of instabilities in the wire
array Z-pinch, 3-D calculations are necessary. The question of whether individual
wire behavior (i.e. merging and sausage modes) or "shell” behavior (RT modes) are

the determining factor in Z-pinch performance could be resolved.

10.1 Future Tasks

As noted in the previous chapters, several modifications are needed in the Trac-II and

Trac-III codes. These include:

1. Conversion of ”splitting” routines into fully implicit routines solved with ICCG. This

will greatly reduce the noise seen in 2-D perturbation problems

2. Inclusion of "wedge” geometry in the R — 8 plane. This combined with the ALE
method described in chapter 8 should allow runs to be carried out until convergence

on axis.

3. Updating Trac-III to include many of the physics routines already in Trac-II. These

include radiation diffusion, QEOS, and 4-phase conductivity.
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In addition to these changes, several studies are planned with Trac-II and Trac-III in

the near future:

1. The critical current problem (described in Chapter 4) will be examined using the 2-D

geometry of the PBFA-Z apparatus.

2. A study of RT growth in the 2D R — # plane will be performed using a test particle
under the influence of the velocity field from a wire array run. If material (the test

0
particle) is being carried away from regions where a—p < 0, this will reduce the growth
r

of the RT mode which is given by v = 4/g——.
0

3. Trac-II will be benchmarked with single wire experiments soon to be performed at
the Nevada Terawatt Facility. These experiments will provide detailed density pro-
files along with information such as expansion velocity and the amount of material
participating in the corona. Comparison of Trac-II with this type of data would help

in validating the EOS and conductivity models used in the code.

4. Using Trac-I11, transverse and RT modes that develop in planar arrays of wires will be
studied. Initially the ideal case in the linear regime will be considered and compared
to theory. Then, with Trac-IIT updated with the physics packages used to model dense
plasmas, a study of the actual PBFA-Z wire array Z-pinch may be performed.
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Appendix A

Introduction to TRAC-II

Trac-II is a two dimensional axisymmetric resistive magnetohydrodynamic code developed
by the late Jim Eddleman. It simulates all three spatial components (r, z, and azimuthal) of
the magnetic field and fluid velocity vectors, and the plasma is treated as a single fluid with
two temperatures (electron and ion). In addition, it can optionally include a self-consistent
external circuit to model capacitor bank energy sources. Recent modifications of the code
include the addition of a 3-T radiation model, a 4-phase equation of state and conductivity
model, and an implicit solver for poloidal (B, B,) magnetic field diffusion. These changes

allow the detailed study of fiber and wire array Z-pinches for high 7 materials.

A.1 Equations Solved in Trac-1II

Continuity Equation

_> JR—
8t+v (puw)=0 (A1)
Momentum Equation
8 — =
<gtu)+V~(p77):—V(Pe+P¢)+<7x§>+V'Q (A.2)

Electron-Energy Equation
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a(gfe) :_Pev'7"_77‘]2_Prad‘l'v'(?e'vTe)‘l’aei(Ti_Te)

Ton Energy Equation

agfi) =PV -T+T -V-Q+V-(Ki VL) +ag (T — 1)

Faraday’s Law

Ohm’s Law

Ampere’s Law

A.2 Additions to Trac-1II

We briefly summarize the modifications made to Trac-11:

A.2.1 The 3-T Radiation Diffusion Model.

The ”3-T” model is a single group model for radiation that is given by [§]

o(aTh)

r

ot

— V- F+PV- T+ V- (WaTl) +acprp (T = T

where the flux is given by

— £V (aT})
h=———0Cm
L2 VT
PER
3r4
and the radiation pressure is defined as
1
F, = gaT;}
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The model assumes optically thick material but is flux limited in free-streaming limit:

C
3pl€R

IV (aTh)| > C—;T;l

Al -5

The diffusion part of the model is solved implicitly with Incomplete Cholesky Conjugate
Gradient (ICCG).The Planck and Rosseland opacities (kp and kg, respectively) are pro-
vided through tables from the super transition array (STA) model [35][24].

A.2.2 Solid-Liquid-Vapor Conductivity Model

For the solid and liquid phases, a simple conductivity is calculated. This is based on the
Mott-Jones model implemented in CALE [22]. Melt and boil temperatures from Linde-
mann’s law are calculated to decide which phase is appropriate. The vapor conductivity
(i =1y = N + Nen) 18 calculated using the ideal gas Saha equation.

v

Thermal conductivity in these three phases is calculated from the Wiedemann-Franz

law which relates thermal to electrical conductivity:

K_x (k_>T
o 3 e
A.2.3 Lee-More Conductivity

Solving the Boltzmann equation with the Fermi-Dirac electron distribution, the transport
coefficients o) and K| (electrical and thermal conductivity) are calculated (in tabular form)
as functions of (u/1e,w,7).pt is the chemical potential, w, is the cyclotron frequency, and 7

is the electron relaxation time [10)].

A.2.4 Quotidian Equation of State (QEOS)

QEOS is a self consistent analytic model which is valid over a large range of densities and

temperatures [11]. The electron part of the EOS uses Thomas Fermi electron equation of

91



state. Using the free energy (in tabular form) the quantities
Eiy Cuiy 1, Z*7/~L

are calculated as functions of (p, TQ,Z,Z) . Z* is the charge state of the atom. Z and A are
the atomic number and atomic mass, respectively.

For the ion part of the EOS, the Cowan Ion Model is used. The quantities
€i7 cUi7 PZ

are calculated as functions of (p, TZ-,?,Z) .
QEOS also incorporates an empirical bonding model which requires various bonding pa-
rameters such as uncorrected pressure and energy, solid density, and the difference between

uncorrected and corrected bulk modulus.

A.2.5 TImplicit Solution of Poloidal Magnetic Field Diffusion

The Poloidal magnetic field §> = (B, By) diffusion was previously calculated explicitly.
The implicit solution is a 9-point scheme based on the vector potential Ay. It is derived

using Eddleman’s definitions for magnetic field:

— 1 —
B,=— Ap) dl
P AVzone fé) zone (T 9)

oundary

(which follows from integrating B = V X A around the zone volume), Ampere’s law and
Faraday’s law:

a

5 (o) = —r () Jo

The resulting matrix is solved with ICCG. The implicit solution of poloidal magnetic field
allows modeling of problems with large vacuum regions (i.e. the cross section of a single

wire in a wire-array Z-pinch) as well as stability for large time steps.
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